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INTRODUCTION AND BACKGROUND

Forced vibrations of undamped 1inear systems are characterized é

by tha differential equation: i

X +wilx = f 3 W= k/m ()
where m and k are the.inerti; and stiffness parameters of the system
and x represents the system displacement. Conventionally m and k are
constants and f i1s a time-variant force which causes resonance if it

contains a component having the system period 2r//k/m . The resonant

term is linear in the time variable t and is a particular solution é
of (1). ;

If w is time dependent the solution of equation (1) is much more
complicated and in most cases has only been achieved through approximate
methods or numerical quadrature. An important subclass of problems
exists, however, for which a good deal of theoretical progress has been
made. These are problems in which the variation of w is periodic and
f is identically zero. Such cases are represented by the homogeneous
linear differential equation:

X+ L2(t)x = 0 (2)

where w? = u;(l - eo(t)) 1

and ¢ is periodic in time. Since this equation is homogeneous it admits

3,

a general solution of the form:
x = Axp(t) + Bxy(t) (2a)

where A and B depend only on the initial conditiuns of the problem.

1

Floquet's theorem  allows for two solutions of the form:

]Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, McGraw
Hi11, 1953, 557.

"
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-its Floquet solutions. (See Appendix A.) The ¢1(t) have the same

- gert
x1(t) t,e
x,(t) = ¢2e'-Yt (3)

Historically, equation (?) is known as Hil1l's Equation and (3) are

periodicity as the 'excitation' function & (t). Thus if y has a non-

zero real part, one of these solutions is unstable and the gecneral

solution exhibits exponential growth provided that the initial
conditions are not those which would cause the corresiinding coefficient
of the growth term to vanish. Theoretically it has been shewn2 that
unstable solutions car result whenaver the ratio of a system natural
frequency to the frequency of excitation takes on values in the ;
neighborhoods of integral multiples of one-half (cf rig. 1). Thus the
primary instability, for example, wiil be encountered when the
excitation frequency approaches twice a natural frequency of the
system. We therefore have three fundamental differences between

conventional forced-resonance and that induced parametrically:

(a) Forced resonance is independent of the initial conditions

whereas parametric resonance is not. Given a force component

o
0 2 ol Sl ol m T

operating at a natural frequency of a system, resonance must occur
whereas a parameter .stiffness, mass) varying periodically at 2/n

times the system frequency (n an integer) need not produce resonance

2Bo]otin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day,
1964’ 22'23.




if the initial conditions can be controlled. This 15 especially sigrif-

icant when the short term response of a system is ¢f interest for there

TR TR A TR TN

is a wide choice of initial conditions for which the early response wil)l

d have decreasing amplitude.
£ ; (b) Forced resonance consists of oscillations whose amplitude
increases linearly with time whereas parametric resonance produces

exponential growth.
(c) Forced resonance occurs if and only if the forcing frequency

Lt OSUERIEE

exactly equals a natural frequency of the system. In coatrast parametric
resonance can occur whenever an integral multiple of the excitation

frequency approaches twice the value of a natural frequency. That is,

P T T T T

Ly parametric resonance - unlike forced resonance - is not a singular 3

o,

e

o

phenomenon but occurs throughout the neighborhood regions of a countable

sz contkad I v w1

infinity of critical frequency ratios. It is therefore a regional i

no e
~v‘bq —— 4

i

phenomenon. An infinity of unstable reaions exist, the most important

il

of which is the primary region of instability.

Effect of Linear Damping

L
b
% The addition of the linear damping term, 2cx, into equation (2)

;E creates no complication since a transformation x = vw can always be
L X found (even when ¢ is time dependent) - such that w =-£Cdtand v solves
the differential equation:
v-[ct+¢-w(l-ea(t))lv=0
which, if ¢ = 0 , has the form of equation (2) and hence has solutions

3). Th t-fcdt -{yt+fcdt
) - X = VW = A¢>](1;)e|:Y Je ]+ B¢2(t)e [yt+fedt]

o s sttt 1o BB LAl bt bt e b e fenm sl s s 4 1

i.e., the inclusion of a linear damping term results in a simple

P

subtraction from v.

RCESS S
w

R O " IPUAPPRIR VL™ SN

(R R

ek A it R R Y

B AR E AR Y A TR SR WS TR L .S




Two Examples of Hill's Fquation
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Sayeral evamples of Mill's pquation are givern in the literature

The one most often cited pertains to a heam column subjected to a

periodically varying axiel compressive 1oad P(t) such 3s depicted in

E
g
13
F
=

Fiqure a. below:

N

N

P(¢)
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figure a. - Classical Beam Problem Governed by Hill's Equation 1
] The governing differential eqguation from fuler-Bernoulli bear :
theory is: i
u N, 42, . 4
3 Bl “Y sp(e) 28+, Zbog (4) :
4 Gx B} & At 3
éw As ‘raicinovic and Hermann5 rave pointed out, an attempt t¢
Ei separate variables through the substitution u{x,t) = X(t)f(t) will
1
-~ result in the ordinary differentia! equation:
t
! -
3 2Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day.,
s 19€4, 22-23.
IDen Hartog, J. P., Mechanical vibrations, McGraw Hill, 1940, 378.
. 5Krajcinov1c, ¥. Y. and Hermarn, G., Stability of Straight Bars
Ssbjected to Repeated Impulsive Compression, ATAK Jourse™ Oct 68,
i 202522077, ‘
) :
F‘l X :
2 %
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Since the right hand side of this equation is independent of x:

iv
Elf. = cunst = o

p X
and n

X _

— = CONSt = up
Thus f+all - BP(t)IF =0 (5a)
and eV - apx = 0 (5b)
and EIX1v + %-x" =0 (5¢)

While eauation (5a) is the desired Hil11's equation for the system,
the separation of variables approach is only valid when X(x) also
satisfies eauations (5b) and (5¢c); i.e., the modes of free vibration
which solve (5b), must be identical to the buckling modes vhich solve

(5¢). The case depicted in figure a. - a hinged-hinged support

svstem - does in fact satisfv both of these conditions. In most cases,

however, the boundary conditions lead to modes which do not satisfy
both (5b) and (5¢). In such cases an approximate Hill's equation can
be obtained through a variacional procedure, such as that due to
Galerkin. In either case, therefore, the problem is reduced to the
analysis of _quation (5a) where o and B derive from an analysis which
is either exact or approximate.

Another example - one which more directly leads to Hill's
equation - considers a system with time-variant inertia, such as a
child pumping a swing (figure b). Essentially a concentrated mass is

raised and lowered periodically along a relatively massless rod

Y3
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(or chain, etc.) which pivots at 0. The rotational fnertia of the
pendulum thus varies periodically in time. The example is one where

the path taken by the mass through the ¢ravitational field results in

a net amount of work per cycle of the motion,

The equation of motion:

-2(t)mg sino = é% (m22(t)8)

- ds do , 420
=2 gt gt t ™ 4z (e)
Approximating: sin o ~ 8,
d%6 4 pd2d8 4 452 ¢
Ut) qer " Cat ar  °
ricure F. - Swing Problem Leading to ;
Hi11's Equation |
Defining & = zo+h(t), T = wt, and w? = g/%, leads to the nondimensional
equivalent of equation (6):
(1+h§'r!)6+_2_§1é+9=0 : (.)=d/d't ]
20 29 3
If h(t) = f,e cos 2t and only first order terms in e are retained: i
5 - 8¢ sin 270 + (1 - ecos 2t)p = 0 (7) é

PRV SRR X~ SN
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Through the afore-mentioned transformation € = vw, the equation for

v and w are:

L <éwwq‘wﬂ"mwwvwmmwww
,
i
I
b
]
i
¥

v+ (1 +3cos 2t)v=0 (Hi11's Equation)

and
w = e € COS 2t

6 to cases where the

5
3
E
A
o
F,

A gr.at amount of consideration has been given
'characteristic exponent' vy, is purely imagirary and the periodic
excitetion ¢ (t) is sinusoidal. Equation (2) then reads:

X + (a-2qcos 2t)x = 0 {8)

This equation - a special case of Hill's equation - is called

B Al N B | kLU R D

Mathieu's Equation (canonical form). As with any Hi11's equation,

g} Mathieu's equation yields periodic solutions (called Mathieu functions)

corresponding to purely imaginary, rational values of the characteristic

exponent y. With a view toward special armament applications, however,

E this report will deal only with the unstable solutions of Hill's
- equation, i.e., those cases in which vy is real.
EL PARAMETRIC EXCITATION - ARMAMENT :
3 There are at least two possible sources of parametric excitation ’
?i in gun tubes - that is, two ways in which periodic coefficients can be ;
1?, intrcduced into the beam equations of motion. The most obvious can be g
f’ called 'multiple round excitation' and derives from the periodicity é
13
‘y presen: in automatic weapons in which several time-variant forces
{ operate .at the firing rate of the weapon. A reasonably comprehensive
Z? 6McLach]an, N. W., Theory and Application of Mathieu Functions, %
o Oxford Clarendon Press, 1947. ‘ i
i
'y
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differential equation including these forces was derived in a previous

report7. Figure 2 shows a cantilevered beam model of a qun tube

acted upon by several curvature-induced loads (constant projectile
velocity is assumed for siminuity). in general one observes

several time dependent coefficients multiplying the various displace-
ment derivatives. In automatic weapons, these coefficients are
reproduced periodically according to the firing rate and will appear

in the Hi11's equation obtained upon integration of the space variable.

In this report the effects of only one such term will be investigated - L E

namely, that corresponding to the periodic ballistic pressure applied

TR T T QTS e T T AR A <R e e Ty

axially at the breech. ' %

A second and less obvious cause of parameiric excitaticr derives

5
i
A

from the coupling between axial and transverse tube vibraticas. The 3
simplest equation incorporating the necessary nonlinear coupling terms

was derived by McIvor and Bernard8 in 1973. Essentially the idea is

that a single impulsively applied load will set a colura ringing with

free axial vibrations. Nonlinear terms - oscillating at the frequency

of these vibrations, couple with the transverse displacement variables ]
29 chrough the stiffness roefficients. We can call this 'single round E
;, excitation'. Thus kinetic energy from the axial vibrations can feed 3
f? transverse modes and lead to parametric resonance. The governing 3
43 :
1 ’Simkins, T., Pflegl, 6., Scanlon, R., Dynamic Response of the M113
13 Gun Tube to Travelling Ballistic Pressure and Data Smoothing as Applied :
o to ¥M150 Acceleration Data, WVT-TR-75015.
N 8McIvor, J. K., and Bernard, J. E., The Dynamic Response of Columns %
0 Under Short Duration Axial Loads, Trans ASME, September 1973, 688. i
i
f 8
!
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differential equations were solved by the authors through a Galerkin
procedure for the special case of a simply supported beam subjected to
an axial end 1oad of short duration. [It should be noted, however,
that there is ro guarantee that the variational quantity employed will
indeed admit an extremum when the associated differential operator is
nonlinear.] Since a good deal of energy is apt to be corsi .ed in
rigid body recoil in armament applications, fixed supports are to be
avoided. Consequently a tube (beam) cantilevered from end supports
which allow axial movement (Figure 5) was chosen as the subje:t of
analysis for this report. (Relative motion of the supoort is ignored. )

Evidence of Parametric Resonance in Gun Tubes

In order to minimize shot dispersion in automatic weapons the
current design handbook9 dealing with gun tube design advises that
the ratio of the fundamental transverse frequency of the tube to the
firing rate be kept greater than 3.5. The basis for this value is a
plot of shot dispersion vs. frequency ratio R appearing in the handboouk
and reproduced as figure 3 of this report. Referring to this figure
three very prominent maxima are observed at successive integral values
-of Re = 1,2 and 3. The reference cited in connection with this plot
is a 1955 report by Wente, Shoenberger and Quinn of Purdue Universitylo.

Their results, shown in figute 4, are in marked contrast to those of

figure 3, however. Absent is the maximum at Rf = 3.0 shown in figure 3.

9AMCP 706-252, Engineering Design Handbook, Gun Series, Gun Tubes,
February 1964.

]Owente, B. E., Schoenberger, R. L., and Quinn, B. E., An Investigation
of the Effort of the National Frequency of Vibration of the Barrel
Upon the Dispersion of an Automatic Weapon, Purdue U., 1955, AD64132.
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[t is also noted that figure 4 contains no information below the value

Rf = 1.0. Thus the only features common to both figures are apparently
E the maxima at Rf 1.0 and R¢ = 2.0. Accepting these maxima as the 1

only credible information to be gleaned from the reference publications a

one searches for an explanation as to their cause. While the maximum
at Rf 1.0 may be attributed either to parametric or to ordinary
(forced) resonance, that at Rf = 2.0 cannot be due to ordfuary

resonance and may be evidence of parametric resonance - which, as

previously discussed, can be expected to occur near nominal values of
Rf = 1/¢, 1, 3/2,....n/2,.... Though parametric resonance should also
produce a dispersion maximum at Re = 1.5 in Wente's plot, it may be 3

that it has been missed due to the paucity or data points.

- Equations of Motion |
? The model chosen to represent armament applications is shown in %
g figure 5. The equations of motion which include c5up11ng between ]
% transverse and axial displacements are those of Mclvor and Bernardg. Q
‘ Eliminating their disvipation parameter for simplicity, these are. :
- [u' o+ ]E viz]' = 0 (9a) ;
, Ve atviVe (uv') =0 (9b)
;, Boundary Conditions E
r P(e)/ER = c,(0,1) = [3u + § (307, _ a
l&. W, 1 3V, , j
| 0= c,(1,7) = [55 * 7 (3)°]y b |
|
3 8McIvor, J. K., and Bernard, J. E., The Dynamic Response of Columns :
i Under Short Duration Axial Loads, TF3EE—*§HET_§EE?£%B§F"HSQE-3EET
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0 = v(0,1) c
0=v"(1,t) d
0=v'(C.r1) e
0=t (0,1) f

where: u = n/L = dimensionless axial displacement
v =E/L

s = x/L

dimensfonless transverse displacement

dimensicnless coordinate

a? = 1/AL? = square of the reciprocal of the slenderness ratio

t = at/L = dimensionless time variable

= (EA/D)]/2 = extensional wave speed

o
|

m
[}

Young's Modulus of Elasticity

Beam Cross sectional area

>
]

p = mass per unit length

0 PR PR VR TI)

I = area moment of inertia
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P(t) = end loading, a ballistic pressure function of i
E
duration To ;
€ © axial strain including lowest ordered nonlinearity _
Multiplying (9a) and (9b) by Su and Sv iespectively and integrating
over the length of the beam:
o '
%e [ (USu - [u' + %-v'z]'ﬁu)ds = 0 (10a)
0
% ' s
Er [ (Vv - [u'v']'év + azvivdv)ds =0 (10b) ¥
2
1
o el o . . —— Y YA SR : ":'.,rj
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Using boundary conditions a and b together with an integration

by parts, (10a) becomes:

&;{Uéu + [u' + %‘v'zlﬁu'}ds + Eé%l Su(0,t) = 0 (11a)

Similarly, boundary conditions b through f applied to (10b) yield:

B TR 0P TR T 4SRN TS

j'(vsv +u'v'ev' + a2v"év")ds + %’V'(1,T)36V(1,T) =0 (11b)
0

The last term in (11b) is an order higher than those retained and

D i vl

is therefore ignored. Except for the boundary terms, eguations (11)

are identical to those obtainud by McIvor and Bernard for the case of

a simply supported beam under end loading. Our boundary conditions,

however, dictate a choice of completely different approximeting

functions in the Galerkin approach to solution. Since both ends of ;
%? the beam in our problem are free to move axially, we must choose
functions which do not constrain the function u at tha end points {0,1), ]
i i.e., there are no geometric constraints such as are present 1> the
problem solved by McIvor and Bernard. A set of functions which appear

to satisfy these requirements:

TRt LAt
Y .

u= qu(r) cos jms 3 j = 0,1,2,... (12) ;

]
:%: For the transverse motion, the eigenfunctions of a cantilevered beam !
3 satisfy the conditions ¢ thru f. Hence: |
H |
 * v=7JT (1)W (s) ;3 m=1,2,3,... (13)
mm m i

12
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where

coshBy + cosBy, :
W (s) = coshf,s - COSR.S - (sinhB,s - sinB.S
m( ) fm i sinhg, + singy Fm )

and the B, have values 1.875, 4.694, 7.855, etc.; further values can
be found in any standard vibrations textbook (cf ref 11),

Substitution of (12) and {13) into equations (1) and making use
of the orthogonality of the trial functions and the independence of the
variational quantities 6qj and 6Tm leads to the following sets of

nonlinearly coupled, ordinary differential equations:

i=0: q, = -P(T)/EA (14)

i=12,... Ej + (3m)2qy +m2nAjmnTan = -2P(t)/EA (15a)

m=1,2,... Ty + a8 T+ T AjpaiT, = 0 (15b)
Jsh

are defined from the integration:

where the Ajmn

. Jmn mn
J=1’29~v~ J:mnn

Table I gives the values of these coupling coefficients through

' {
125utde = - ' ' =
fov Su'ds ﬂfoz‘TmNm '{‘Tnun Z jGQj sinjnsds m}_z A. T T qu

A666' Equation (14) is decoupled from the others and being repre-
sentative of rigid body motion is of no further interest. Equations
(15) can be solved numerically by any of several numerical integration
pr'ogv'ams"2 once o has been specified along with the nondimensional

1oad function P(t)/EA.

yowacki, W., Dynamics of Elastic Systems, Chapman and Hall, 1963, 122.

12Ra1ston and Wilt, Mathematical Methods for Digital Computations,
Wiley, 1960, 95-109.
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RESONANCE

A L L
‘ i
+

During parametric resonance certain transverse coordinates Tm(r)
become much larger than the rest. Thus the quadratic coupling terms can

be ignored except those expected to resonate. In single round resonance

it is expected that the response to P(t) will mainly occur in the q1(1)

variatie (i.e., the fundamental axiai mode) and therefore only one

b Rl T Ay T
Al L b

such term need he considered. If m = M represents the particular

T T

transverse mode such that apy? = m/2, primary parametric resonance will

TR

result. That is, the natural frequency afy? is half the frequency of

the exciting variable q = Asinmt, T > t,, where 1, is the duration

0
of the load pulse P(t). ]

TR T T

for the study of single round parametric resonance therefore,

LR

equations (15) reduce to:

T e ey
[ Py

fit S ge

Gy + m2ay = -2P(1)/EA = -2P*(1) ; T < Ty (16a)

Ty * (a8 + Aar ()T, = 0 (16b) ;

TR

In multiple round resonance, transient axial vibrations are i

L
i

ignored and the qj(r) are assumed to follow periodic applications of

the load function quasi-statically. In this case, if the firing rate

is twice the Mth transverse frequency, parametric resonance will

1
3
1
1

LT 4

result. Since all of the qj(r) are periodic according to the firing

rate, it is not icceptable to retain only the term in qy as in the case -

[ 3

BBt St g A

of single round resonance. However, the amplitudes of these quasi-

static responses attenuate as 'I/j2 (neglecting the quadratic term in

e vl

- 15a) and only a few need be retained for accuracy. In place of

14
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equations (15) we therefore have:

aj + (jn)’qj = -2P(t)/EA = -2P*(1) {17a)
?M + (a2p," + §AJMMQJ(T))TM =0 (17b)

where gﬁgf = (weapon firing rate)/2
2n

The periodic character of the a; in either (16b) or (17b;
qualifies these as Hill's equations. As earlier indicated, the
general solution to Hills' equation can be written as:

Tu(T) = agy(t)e’" + bo,y(r)e¥" (18)
where the ¢; are periodic functions having the period of Q-

It should be mentioned in passing that when y is real, a plot of
the solution (18) will always show oscillations near the natural
frequency aBM2 even though the b have the same period as q, i.e.,
approximately half the natural period E%ﬁr . That is, the periodicity
is not representative of the oscillatory appearance of the response.

It can be shown (see Appendix A) that once a solution for Hill's
equation is obtained over one period of the excitation, it can be
extended analytically for all time by means of Floquet's theorem.
Further, in the case of Mathieu's equation, analytical methods have
been dueveloped leading to the direct determination of vy, the character-

istic expornant. A detailed series of curves for this purpose were

developed by S. J. Zaroodny'S in 1955,

13Zaroodny, S. J., An Elementary Review of the Mathieu-Hill Equation of

a Real Variable Based on Numerical Solutions, Ballistic Research
Laboratory Memo. Report 878, Aberdeen Proving Ground, MD, 1955.
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EXAMPLE 1 - THE MCAAAC GUN TUBE

It is of interest to assess the likelihood of encountering single

round parametric resonance in the particularly long and slender tube

planned for the Medium Caliber Anti-Armor Automatic Cannon* currently
in the design stage. To this end equations (16) will be employed after
first establishing the magnitude of P*(1) and the mode M in which

resonance might be expected.
Equation (16b) aiways possess the (trivial) solution TM = 0.

This solution only applies when the 'initial' conditions of displacement 1

and velocity following the application of the load P(t) are identically

zero in which case the response T will be null no matter how intense

the 'excitation' qj(r). This is of 1ittle concern in armament

applications since a good deal of transverse mution is certain to be

excited by the firing of a »ound. For example the recoil of a s)ightly 3
] curved gun tube or the motion of the projectile therein will always i

excite some non-zero 'initial' motion. The axial vibration q](r) in ;

recponse to the ballistic pressure puise will generally result in

amplifica.ior of _hese initial mctions by its appearance in equation (16)

if th~ parameter . happens to be ‘tuned' fur parametric resonarce.

E UL

According tc results from the latest finite element (NASTRAN) model

of the MCARAC tube (see Table I1), the fundamental axial freguency i3

verv clcse te being twice the frequency of the fifth transverse mode -

R

* The MCAAAC concept plans for a two or three round'burst' and is there-
fyre not an automatic weapon in the same sense as a conventional machine
cun. Thus multi-round resonance is thought not to apply and the
investigation is confined to that of reconance which might be induced

B 2o o nl i o JENL o 4 et L
. 1]

:
' from the firing of a single round. f
. ‘
i ;
. 16 ﬁ
i
- f
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making primary parametric resonance of this mode a possibility if

enough axial excitation is produced from the application of ballistic

At

TR

pressure to the breech. The parameters for a uniform beam model ot

j this tube were chosen, thercfore, so that the fundamental axial

% frequency of 580 hz corresponds to 7 in eauation (16a) and exactly

? half this value corresponds to u652 of equation (16b). A summary of the

% pertinent parameters implied by these assumptions appears in Table III.

% The load function is approximated by a haversine shape. Thus (16a)

j reads:

: 6] + m2qq = -P*(1 - cos g%i) bt

% The respcnse following the termination of ballistic pressure is }
; sinusoidal with amplitude: ?
2
? Assuming negligable response from the other axial modes, equation

g (16) becomes (for suitadble choice of 'initial' time zero): ;
2 '.|:5 + uzBs"('I + € cos TTT)TS =0 5

where ¢ = A155q1(max)/a285“

i tts o A i

Using values from Tables I and IIIl, ¢ is evaluated at 2.07 x 1072,

The solution for T is given by expression (18). In view of the small-

a0 ot bl fechitiok ol it

ness of € and the precise state of tuning assumed, a very good

2

approximation for y can be obtained by the method of strained para-

meters]4. The result is:

Yy = me/8

14Nayfeh, A. H., Perturbation Methods, John Wiley, 1973, 63.
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In real time the magnitude of this exponent (see Table IIl) becomes:

"% x 1160 = 9.44
8

In general the coefficient of the growth term in (18) depends on

TR RRRTYACTRGE R »mumwmmnum
- “ T
o
j
R
-
§
|
|
{
\
{
1
1
i
b
)
)
i
[
]
1
B
i
!
|
I
il
|
}
[

both the initial displacement and velocity of the Mth transverse mode

at 'time zero'. It is this quantity which is amplified, the remaining

term of (18) becoming less important as time moves on. As a specific

example it is notable that for certain initial conditions (see

Appendix A), the general solution (18) degenerates to:

I S b AR A T (I L Il

TM(t) = Coy(x)e’ vy >0
In this case any transverse initial displacement T5(0) is
amplified according to the multiplier eY'. The real time computed 3
value of 9.44 implies an amplification factor of nearly three orders

of magnitude only 3/4 seconds after excitation. In practice, however, 3

this build-up is unlikely owing to the attenuating effect of damping

,..,..,m,,.m_,r..‘,b_w,,...,‘,,..
FOT S e e T Ll

and the improbable state of tuning and initial conditions necessary

i> for maximum v.

;i The probability of experiencing single round parametric resonance 1
éﬁ can be significantly increased if the duration of the ballistic cycle j
ziﬁ becomes briefer than that assumed. Actually, it is the ratio of the

;g- period of the ballistic pilse - whatever its shape - to the funda-

mental axial period which is of importance. Figure 615 shows the

T ey ey

O e

154arris, C. M., and Crede, C. E., Shock and Vibration Handbook,
Vol. I - Basic Theory and Measurements, McGraw-Hill, 1961, 8-24.
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enormous influence of tnis retio on the value of y. For example, a
haversine pulse ¢f ratio 0.8 will solicit an axial response fq](maﬁn

which is about twenty-five times greater than the previous case

T Y A T AT R

(wheve the ratio was approximately 3.5). Since y airectly depends on

T

q1("ax). an amplification of three orders of magnitude is realized in

L

less than seventeen cycles of axial vibration (about 3C milliseconds).

e

In view of this potential for large vy it is therefore important that

T T

the design of a weapon be such that axial vibration magnitudes be kept

E
3
E

small - principally by creating intentional mismatch between the

bt

fundamental axial period and the period of the ballistic cycle. E

AT T T

Referring again to figure 6, a haversine ballistic period should be at
P least twice the fundamental axial period. For ballistic pulse shapes
which deviate considerably from a haversine, a response spectrum

similar to that of figure 6 can be easily derived via computer.

-

Before moving on to a specific example in multiple round resonance.

T e T

some consideration should be given to the manner in which the excitatian

ey

] differs from that considered in the single round situation. As

previously stated it is not the free axial vibrations but rather the

quasi-static responses of the axial modes whick serve as excitation 3

of transverse vibrations. For example if P*(t) is a single haversine

O:

'
13 pulse of duration t
2 0
' i.e.  P*(r) = P*/2(1 - cos 2m/1))

‘5 then the solution to (17a) is:

19
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- 2 2 2
-P¥ | T (P
- -9 L9 __ . .2nr Nk cosi
qj(T) (jﬂ)2 i 1 . 2-(.2» R cns " + - 2-(2)2 AT (19)
L.. \0 J) 0 \0 3_

P ek i

T

If ty > 2/j, the natural period, then

4y * -2P*( 2/ (n)? (20)
that {is, the response is quasi-static. In all weapons of short tube
length - typically automatic small arms - the ballistic periond is much
longer than the fundamental natural period of axial vibration and the

assumption, t, >> 2/j is justified. Thus the oscillatory terms in

RS g L LT e e

the solution {19) can be neglected with 1ittle sacrifice to accuracy.

Eit L e

On the other hand while T, May be long compared to the fundamental ;
axial period, it is very short when compared to the periods of the 3
o first few transverse modes. It is tempting, therefore, to corsider

7 replacing the qj(r) - as they appear in (17b) - by impulsive type terms. ;

It will be shown that such a replacement sacrifices little in the way

T

£ of accuracy and leads to a very convenient consoliidation of results.

e .l i i

Multiple Round Parametric Resonance - Impuise Excitation

T

In 1968, D. P. Krajcinovic and 6. Herrmann published work5 dealing
with the parametric resonance of bars subjected to repeated impulsive

compression. The equation studied by the authors can be obtained by

substituting the quasi-static solutions of (17a) into (17b):

T o< - 1 *{ ¢ = H
TM * iy R " P (A)]TM 0 (21) 4 i
1 S5Krajcinovic, P. P. and Herrmann. G., Stability of Straight Bars
| Subjected to Repeated Impulsive Compressior, KIKI Journal, Oct. 68,
N 2025-2027.
20




i
i
1
|
i

E

¥ where

é o> = o?gy* and W = §2AJMM/(j"QM)2

%1 The load function considered by Krajcinovic and Herrmann:

. ko ,

g P*(1) = P]* + PO*kZ-g(eT - koTj (22)

;

% where T is the period of P*(t). Physically, (22) represents an

é infinite series of impulsively applied compressive loads superposed

% upon a steady load of magnitude P]*. 5(z) represents the Dirac

é function and 6 is a parameter having the dimensions of frequency. In

; ' practice the authors did not have to deal with the full load expression

f , (22) hut only one cycle thereof, for example - a single impulse applied %

;’ at T = 1, This is possible because Floquet theory (see Appendix A) '

% enables the solution over one period of the excita ion to be extended é

; indefinitely in time. Furthermore, questions of stability can be “

g answered by considering whether the motion grows or decays as a result g

i of a single load application. Thus the load function actually used %
for analysis was equivalent to: !

P*(t) = P *slo(t - T)] (23)
that is, a single impulsively applied load at t = 7 .

PRI LN E

Defining vyP,* = M, equation (21) becomes:
T+ 02[1 - us(e(r - T))IT = 0 (24) a
(The subscript ¥ is implied throughout.)

21
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Stability Analysis

16

1 Floquet's theoreir’ = guarantees the existence of particular

solutions 7(T), to equation (24) such that
T(t + 1) = oT(1) (25)

LACHEUL R L Atk Bk Tl

where T is the period of the applied load. We are interested in
determining the conditions under which p may be real and have an

absolute value greater than unity indicating a growth of the response

§ amplitude after one period of the excitation. Bo]otin17 has shown .
é that if two linearly independent solutions Ty(t) and Tz(r) are 7
% chosen which satisfy the so-called 'unitary conditions': ]
1 : E
(0 =1 T0) =0 ?
: (26)

g .

2 = =

A T2(0) 0 T2(0) 1 ;

then the equation for p becomes simply:

-

p? = 2Rp+ 1 =0

where

A = IT(F) + Tp(i1)] |
E“ The condition that a value of p exists with |p| > 1, therefore amounts ]
é to:

i 1Al > 1 (27)

‘iv It is also apparent that the two roots of the quadratic equation are

; reciprocal - i.e., g, = 1. |
ig 16Meirovitch, L., Hethods of Analytical Dynamics, McGraw-Hi1l, 1970,264. f
i 1780%0tin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day, 1
i 1964, 14. .
L :
i |
* 22

i s kil it e Il B it i e s it A ARl W 1A SR aia e et




Nt L Gl I B

g Ty R ‘mWI«‘;wmwwz“"r—wviﬂ‘}" iR

-

T T

T ey R

-

F A

o o T O Ty T e T
e A s TR

TR LA DR " nwuwm Wm

Now two linearly independent solutions to equation (24) which
satisfy the unitary initial conditfons (26) are:

T](r) = oS Q1
_
e T < T

In order to use the inequality (27), the values of T](E+) and
%2(?+) are required. While the functions themselves are continuous
at v = T , their derivatives are not - owing to the application of the
impulse at this instant. Thus the derivative, %2(;) cannot be
obtained by simply substituting into the derivative expression for T2.
The step change in the derivative, however, can be computed by a
direct integration of equation (24) over a short time interval

containing the point v = T.

1.e. A 1+  THe .
{] _o= [ e*[us(e(r - 1)-1)IT(1)dr
T=-€ T=€

Since T(t) is continuous at T, the term Q2T contributes nothing

to the integral as ¢ is made vanishingly small. Thus

pl e AL (29)
- 18]

The right hand side of (29) derives from the relation:

;:a<az>¢(z)dz - |—;|~ [:s<z)¢<§>dz . I_:T 5(0)

where ¢(z) is a test function. Since 9 is arbitrary it can always be

chosen as positive and the absolute signs omitted accordingly.
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gﬂ
Thus, from (29):

i T e - A L - .
3 f2(1' ) = _elJ_ TZ(T) + Tz('r ) = _,6p_ T2(‘t) + cos 0T
fl hence 1
1 Al = 5| 2cos Q%-+%$ sin OF
% Thus the instability condition {27) becomes:
: IA| =|%% sin @1 + cos ot | > | (30)
1
% In the work performed by Krajcinovic and Herrmann, © is defined
"7 as being inversely proportional to t (8 = g;’l) which is the customary
% definition when treating cuntinuous excitation functions. Adhering F

to this definition in the case of repetitive, discontinucus loads, é
% however, leads to a load function which is physically improbable. j
L’ .
E For the load function (23): ;
1 i.e. P*(1) = P *sle(r - 7)] ‘
f
{ the impulse of this load under the above definition of 0 becomes: 4
: - P* P T a
: Po* [ sl - T)ldt = 5~ = 75 (31) __‘
5 that is, the impulse strength is seen to depend on 7 , the period of %
# time between impulses. This is not the physical situation of interest é
ﬁ, in armament - and many other - lications which imply a sequence of 3

equally strong impulses independent of their spacing in time.

Fortunately, these cases can be handled merely by redefining 9, i.e.,

ki

ey O e

let 6 = %b » where 1, represents the duration of the ballistic load

3 function as shown in figure c.
.
:}'
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?. . Figure c. - Periodic Ballistic Pressure Function
; Under this definition of 6, the impulse (31) becomes: é
_ P % :
' 0 _ -
d -e— = pO*TO = IO
: I, is defined as an impulse conveyed by a load of average value Po* 2
: and duration 1, . In practice P*(r) in equation (21) is to be ;
E replaced by the load function PO*G[B(T—E)] which has the same impulse 3
ﬁ as P*(t). Thus PO* must represent the nondimensional time average f
%f _ axial load on the breech due to ballistic pressure. ' i
¢ The result of redefining 6 on the instability condition (30) is f
F considerable. Whereas the expression for A in (30) is purely a f
S
. function of u and the ratio of the natural frequency to that of the :
? excitation, this is not the case when the meaning of 6 is changed. é
o j
? Substituting 6 = 1/To into (30) the condition for instability becomes* ;
1
:“’ ]
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9 -
|Al = !——‘2@ sin Ot + cos QT| > 1 (32)
] Thus for the Mth equation (17b) we have p = puy and Q = QM as previously 3

d defined so that (32) becomes finally,

T

A'MM Io R - -
A, = |5 ——— = sin + cos oyt | =
‘ MI lg (J-,nBM)z o QMT M

¢ Cyul A

2 = | ao sin 2w 'Qﬂﬂ‘ cos 2w M | (33)

: ‘e ve .
3 where definitions for Cy and we are inferred. we NOW represents the P
f: frequency of the impulse excitation instead of 0. AM is seen to o
3 depend on !y/a - the product of the impulse and the slenderness ratio - i
. and the ratio of the unperturbed natural frequency to that of the

X excitation. It is also apparent that in contrast to (30), AM is now ,
} periodic in the frequency ratio implying equal stability criteria for i
Y i
1 all *zones' of instability — = 1/2, 1, 3/2, ..., n/2, ...
f e 33
|
4 The Characteristic Exponent - Maximum Value .
?; The general solution to Hill's equation (17b) is given by (18).

: This solution, having property (25), implies the following definition

i for v, the characteristic, or 'growth', exponent: 4
]
s 1 1
5 Y = Inlo| 3y real 3
18 T :
?F For a given excitation frequency we, T is a specified quantity and

J; maximum values of |p| determine maximum vy. In calculating the partic-

A ular frequency ratio for which [p| will be maximum, we first let ,
/g = n/2 + 8
+ 26 §
15
£
.
1% 3
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n designates the zone of instability while § a local coordinate to be

varied in searching for a maximum value of |p| .

Cml
= [-%;Q-Sin 218 + cos 2m8](-1)"

M =02 (1) [Gylo/a cos 2n6 - sin 2ns]

so that 1 tan'1

Cmlo
2m a

= 6]. a value of & for which Aw is extreme.

From (26b):

For extreme values of p:

A -1/2
‘2"'751 t Aylty® - ) =0

Thus when 8 = &; , p will also be extreme. Substituting:

1

—— s T, |
cos 2m6y

lol gt = | S
cos 228y

ext

hence 1 + sin 2m6]
lplmax = | Tcos Znéy | (34)

where the sign is chosen to agree with that of &;. Note that Iplma

is confirmed in (34) to be completely independent of the zone number
Cw1

n. For practical ranges of -%;2', 81 is small and can be considered

a linear function of this parameter.

'i.e. 2“6] = CMIo/Q.

_ 1o
and (34) gives: |p|max = 5
or - 2n|p|max = CMIO/a » to a high degree of accuracy. (35)
27

Substituting in (33):
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Figure 7 is a contour plot applicable to all instability zones.
The contours are curves In|p| = constant. The plot shows that the
instability becomes broader in band and that for larger values of the
parameter R = Cyl /x the values of In|p| become less sensitive to
variations in 8, i.e., the contour slopes %% become flatter.

It still remains to determine the conditions under which a
repetitive load function can be justifiably replaced in Hill's
equation by a repetitive series of impulses. It is expected that thzse
conditions will not strongly depend on the particular shape of the
function involved but rather its duration, Ty and the frequency, Q ,
of the system on which it acts. For the sake of argument, therefore,

a sequence of rectangular pulses ¢(t) is chosen as excitation to Hill's

equation:
f+02 (0 -yu(t))f=0
where
d(t) =1,0<T<T
-0
=0, Tg<T<T
and

ot + 1) = ¢1)

The corresponding expression for A in this case turns out to be18:

pq2+0?)
A = (sin Ty €OS Py, - i_zgir_—-cos Qt, sin p1T0)sin NT +
2 z; (36)
+Q
p 3 0 -
+ (cos PyT, COS QT * 1—55;;—— sin pyt, sin Qro)cos ot

where P1 = o/T-1

18$oizin, V. V., The Dynamic Stability of Elastic Systems. Holden-Day,
964, 18.
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It is easily verified that for small values of the quantity Q1o »

the expression for A above reduces to that in (32). Expanding the ]

R IR E T

transcendental terms containing the parameter 0Ty » and retaining up

to third order terms in this parameter, (36) becomes: %

A = Quty/2 (1+Q%ut,/6) singT + cosat
% Cwl Cul o
] = '10(14'—%—0—32) sin Qf + cos 01
E
: It is therefore concluded that if
3o 3
L—i Q‘[ << (37) g
1 0 CMIO
’ the approximation (33) will be good. j
EXAMPLE IT - M139 AUTOMATIC WEAPON :
1 The 20mm M139 at first glance (Fiqure 3) would appear to be
Q vulnerable to transverse vibration excitation. It has the appearance
? of a Tong and slender tube - as compared with, say, a typical .30
; caliber gun such as illustrated in reference (9). Actually the
slenderness ratio of the two are nearly equal having values of ;
‘ approximately 103 and 92 respectively. In spite of this our intuition ;
; is not in error. As previously demonstrated, it is not the slenderness ]
EE: ratio alone, but its product with the non-dimensional ballistic impulse 5
fi_ which determines the strength of the exponential growth in parametric »
ér resonance. As it turns out, this impulse (Io) for the 20mm round is
:5 nearly three times larger than that computed for the .30 cal weapon. !
? A complete set of calculations follow - leading to the evaluation |
;;' of the parameters CM and Iola. The possibie values of the growth ?
E_?j :
I 29 |
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exponent y are then determinable from fiqure 7 .
A uniform tube approximation is assumed:

D

o 1.5 in - tube outer diameter

D; = V.79 in - tube inner diameter
L =72 in - overall tube length
pAV = 40,000 psi - time-average ballistic pressure

ty = .0015 sec - effective duration time of ballistic pressure

function
a = 2.02x10° in/sec - extensional wave speed
E = 30x10° psi - Young's Modulus of Elasticity

If the ratio of the unperturbed natural frequency Qy to the
excitation frequency w, is nearly an integral muitiple of 1/2,

parametric resonance is possible.

. B’ .
1.€., w&z?ﬂ_??: n/2 n=1,2,3...
e
or T = nm
GBM

T is the time between rounds. In real time, t = 7L/a, corresponding
to a firing rate of 915 rounds per minute - a reasonable value in

practice. From the previously assigned values:

1= /AT = 103.3
a - the slenderness ratio

If we choose M = 1, that is, parametric resonance of thc fundamental
transverse mode of vibration, then for n = 2,

T=-2T_:184 and t * .066 sec
afq
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where we have used the value 81 = 1.875 - corresponding to the
fundamental mode of a cantilevered beam.
The nondimensional axial load (average)*:
mPayDs 2
AVYi - -4
Po* = 3EA 5.12x10
The duration of this load in nondimensional time:

| =
To © L—to 4.1

Thus the nondimensional impulse is:

- - -4
Io = PO*TO 21,58x10

Recalling the definition of CM:

A
_g P
7L g

For M = 1, therefore:

- A :
1 [in(1.875) 72

The parameter Q;t, must satisfy the smallness criterion (38); i.e.,

.234

%
M “ I,

Substituting values for the parameters:

.0956 << 57.5
which would appear to be satisfactory.

*Note that the real quantity of interest is the nondimensional impulse,
Io. If ballistic curves are available this quantity can be determined
d?rectly by a simple integration.

3
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Expression (36), or equivalently figure 7 shows that the
greates' value for 1n{o!max is .052. The corresponding growth

coefficient:

1n|0|max .052
Ymax - E - .066 = c786

This value of y can produce a vibration amplification of over 50
in 5 seconds of repeated firing. In other words if at any time during

firing the deflection of, say, the muzzle is a given amount then 5 sec

= later this deflection can be over 50 times greater.
It is not likely that the exact state of tuning will exist such i
5 that the maximum amplification will be realized. Furthermore, as ]

previously shown, damping will reduce the amplification. On the other-

nand there are other loads which have not been considered and which may

é be non-mitigating. Reactions from the moving projectile and the 3

¥ .
g travelling propellant pressure as well as the relative movements of
E supports are synchronous with the load considered in this report and may f
add to its effect - possibly more than offsetting the reduction caused
by damping. Again it is mentioned in connection with figure 7 that
3 the state of tuning leading to large amplifications need not be as
= ) i E
.. precise when larger values of the abcissa are encountered, :
13 ASCUT O
1) The models assumed in this report are of course, somewhat
ég idealized. It is always a question as to wher more detail should be :
. *~cluded. How much is gained, for examonle, by including the geometry %
; of a variable cross sectional area when knowledge of the suiport j
Fji:
3
- 32
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conditions is always so imprecise? Further, it is almost certain
that the general character of the results shown in figure 7 will

prevail regardless of the detail incorporated in the modeling effort.

That is, no matter how detailed the model, parametric resonance will
! : probably be confined to a narrow band of frequencies for the tensile
loads likely to be induced on the tube through firing. The frequency
is going to have to be 'just right' for it to occur. But given the

LA R S A A A

proper frequency ratio our preceding analysis definitely suggests

that ballistic forces are sufficient to create significant exponential

growth, It is doubtful if any higher degree of confidence in these

R 1 It B

it ik bk

general findings could be obtained through the use of more refined

models. On the other hand, the frequencies and even the particular

mode which may resonate cannot be predicted with confidence unless an

BN Lt i

extremely detailed model is employed. Even then, in cases where

i
i i

i Rl

parametric resonance is suspect, field measurements should be made to 3

determine precisely the frequencies of free vibration and excitation.

B R AL o S B i
LA AL NN

As mentioned earlier in this report, there exists certain inconclusive

’]
. evidence9 0 that dispersion maxima observed in tests with certain

E; automatic weapons may be caused by parametric resonance. On the basis

whitns Lot Ul s e

i of the feasibility demonstrated herein, it is advisable that such
Ef ' experiments be repeated in a more tightly controlled manner so that
¥

]

a conclusion may finally be drawn.

3 9AMCP 706-252, Engineering Design Handbook, Gun Series, Gun Tubes,
3 February 1964.

10yente, D. E., Schoenterger, R. L., and Quinn, B. E., An Investigation
of the Effort of the National Frequency of Vibration of the Barrel
Upon the Dispersions of an Automatic Weapon, Purdue U., 1955, AD 64132,
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TABLE I™- COUPLING COEFFICIENTS Ajmn

AT AT T Pﬁ!'mmwv“
)

Avyy = -9.83 A]2] = 1.0

AHZ = 1.1 A]22 = -50.1

A3 = 7.7 A123 = 16.4

Ay = 1.9 Aypq = 30.3

A A”5 = 1.68 A]25 = 6.93

§ Al = 819 Ajgg = 7.5
; A]31 = 7.7 A141 = 1.91 1
: A.‘32 = 16.4 Rygp = 30.3
‘ A'l33 = -128. A.'43 = 18.4
. A]34 = 18.4 Rygq = -247.
f A]35 = 69.6 Ags = 18.9
f Ryzg = 11.3 A146 = 122 :
% Apsy = 1.68 Agp = 819 2
] Asp = 6.93 Prgp = 7.54
Ayg3 = 69.6 A63 = 11.3 :
; Aisg = 19.0 Area = 122. ;
‘ A155 = -404. A'|65 = 13.3 :Té
b Mgg = 193 Mo = 801 o
]
i *Certain symmetries are evident throughout the Table. No attempt has
. been made to make use of symmetry properties in order to shorten the X
tabulation. ‘
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b
N

211
A2
A3 =

>
|

214

p -3
\

215
216

>
L]

231
Ar3p =

>
\

233
234
235

> > >
\ n

236

Arsq =
Arso =

>
\

263 ~
Aosa

>
A

255
256

TABLE I - COUPLING COEFFICIENTS A (cont.)

9.78
-48.6
26.3
25.4
3.35
5.94

26.3
-115.
94.5
-247.
61.6
201.

3.35
92.8
61.6
-433.
85.9

= -670.

>
[

221

222
223
224
225

> > > > >
|

226

-
n

241
Az =

p
\

243
Arag =

T
)

245
Prae =

Are1 =
A262
A263
A264

>
i

265
266

>
i

O P I P R A T PO Y e

s e a2

= -48.6

84.5

= -115.

45.7
92.8
18.4

25.4
45.7

= -247.

89.5

= -433.

68.9

5.94
18.4
201.
68.8

= -670.

83.4
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Ay
312
313
314

FITEIRTRIT T RTINS IS

315

> P > P

316

33]
332
A333
334
335

S A S S S AR I LYl S S RN R

>

e
>

336

351

Nl cwg, et T Tt
>

Thiy

-]

352
353
A3ss

g

L B | A S o
e

A3s5
A3s6

TABLE T - COUPLING COEFFICIENTS A (cont.)

-6.53
33.8
-112.
45.5
53.4
2.50

-112,
164.
-156.
196.
-434.
111.

53.4
73.1
-434.
197.
-440.

194.

321
322
323
324
325

> > P P P>

326

Az

A342
A343
A334
Asas

Asa6

361
362
363
364
365
365

> P > I I I

33.8
-174.
164,
-216.
73.1
183.

45.5
-216.
196.
-279.
197.
-722.

2,50
183.
1.

-722.
194.

-639.
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TABLE I - COUPLING COEFFICIENTS A (cont.)

A4]] = 8.19 A42'| = -23.1

82 - -23.1 A422 = 108.

Aqy3 = 62.5 Agpy = -351.

A414 = -201. A424 = 266

415 - 68.8 A425 = -349.

As16 = 91.8 Pgog = 98.3

A43.| = 62.5 A44] = -201.

(EEINEAR M vt TR S R A S i bl SR b B+ St ‘w”
il

Ag3p = -351. Aggp = 266.
; Agzg = 273. Agqs = -237. “
; Agqq = -237. Apgqg = 366. %
é} Agsg = 203, Aggs = -39, ;
; Aygg = -674. Aggg = 316. %
% Agsy = 68.8 Aggy = 1.8 :
: Agsp = -349. Aggp = 98.3
g' Agsg = 303. Ages = ~674 -
¥ Aysq = -394, Pggs = 316.
% Pgss = 381. Aygs = - 588. §
3 . ' Agsg = -588. Agg = 375 - :
i

Sy
i
i
i
E
g
i
E
£

3
|
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511
512
A3
514
515
516

As31
532
533
Ag34
535
536

551
Ags52
553
554
Asss
556
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TABLE T - COUPLING COEFFICIENTS A (cont.)

Ad
»

-7.19
28.9
-38.5
98.5
-316.
96.6

-38.5
183.
-66.9
401.
-339,
420.

-316.
390.
-339.
535.
-494,
575.

. e o s

s
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= P B > X

Ag21

A522

As23
As24
Ag2s
As26

Asar

542
Asas

Acgg
A

A

A

545
546

>

561
562
563
564
565

566

28.9
-80.1
183.
-586.
390.
-512.

98.5
-586.
401.
-324.
535.
-542,

96.6
-512,
420,
~542,
575.
~698.
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AG]] = 7.85 A62] = -24.7
A6]2 = 24,7 A522 = 101.
A6]3 = 49,3 A623 = -130.
A6]4 = ~56.3 A624 = 270.
A6]5 = 142. A625 = -878.
Agig = ~456. Agog = 539.
:
;%' A631 = 49,3 A54] = -56.3
Ag3q = -1078. Aoqq = 556.
A635 = 552, A545 = -432.
Agag = =459, Acgs = T16.
; Ags1 = 142. Asgy = -456.
£ A652 = -878. A662 = 539,
A653 = 552. A663 = -4590
Agsy = -432. Aga = T16.
A655 = 750. A665 = -632.
A A656 = -632. A666 = 836.
+
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TABLE I - COUPLING COEFFICIENTS A (cont.)




TABLE IT - EIGENVALUE ANALYSIS (NASTRAN) - MCAAAC, 60MM

(Trussed Configuration)

ST TP TR TR TR, T o T W-F“
"
;
i
i
-y
q
3
i
i
g
il
i

: Mode Type Frequency (hz)
E Recoil mode 1.81

Fundamental Transverse mode 79.5

2nd Transverse mode 100.5

EL% - it et AL R

3rd Transverse mode 125.6
4th Transverse mode 218.7 i

5th Transverse mode 296.2 E

Bla s LA B D)

L 6th Transverse mode 412.7

-

. 7th Transverse mode 525.9

T

y Fundamental Axial mode 580.1 2
1 2nd Axial mode 1189.2 :

pies <
24

3rd Axial mode 1898.4 b

1 ey
i3

>
it

4th Axial mode 2496,2

-,

[

ey A e el T T
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TABLE III - PARAMETRIC VALUES, MCAAAC TUBE

‘ The parametric values 1isted below are based on the material constants
E, for steel, a peak ballistic pressure of 75,500 psi, and the NASTRAN-
predicted frequencies for the fundamental axial vibration and the fifth

transverse vibration modes.

a2 = 5.44x1o’5

1160

i P(t) _ P *
: EA - L (- cosg%:r—)
: 2 0

~

~

(ud
1}

Y px = 7.03x10”"

T, = 6.96
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Excitation in Hi11's Equation is a
(cf ref (2), p. 18, fig. 4).
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Substituting into A2:
Af1(t+T) + sz(t+T) = p[Af](t) + sz(t)]
Using A3:

2
4

& {Aa]jfj(t) + Baejfj(t)} = o[Af, (t) + Bf,(t)]

Since f] and f2 are independent:

Aa,, + Be,, = Ap

11 21
Aal2 + Ba22 = Bp (A5)

A5 only has nontrivial solutions if the determinant of the
coefficients of A and B vanish:

i.e., a,, - p a

a2 A0 = P

Substituting into either of the equations A5, each root pj
gives a ratio B/A such that the solution will satisfy the condition

A4.

p; - @
J 21

In particular, if f1(t) and fz(t) are chosen to satisfy the so
called 'unitary initial conditions':
f](O) = ] f2(0) =0
f]'(O) =0 fé (0) =1

then, from A2:

>
]

Y(0)

rd

= Y'(0)

o
]
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and hence the ratio B/A is the ratio of initial conditions such that
A4 is satisfied. Further, from A3, definitions are given to the ay5°
f1(T)

an
hence

£ (T)

£, (T)

412
a

& ooy, - 10
an [ 0)/ \hjgj . fz(T)

22

(A8)

The quadratic equation for p (A6) becomes:
2. 20p+B=0

* %
where

I
I

T IR + £(M]

(o=
[{

= FTIEAT) - £,(TIF(T) (A9)

Multiplying the first of these equations by f2 and the second by

f] and subtracting:
. (19)

1 = o= ik
f1f2 f2 1 0

Integrating:

B = f (t)f,(t) - f,(t)f'(t) = const
1 2 2 1

The constant has unit value in view of the unitary initial conditions

employed.

19Boyce, W. E. and DiPrima, R. C., Elementary D1fferent1a1 Equations
and Boundary Value Problems, John Wiley, 1366, 8&9.

*Note that this equation can -be written W' = 0, where w]2 is the
Wronskian of f,(t) and f, (t). 12

+
**If any of the f; have Jump discontinuities at t = T, then A = A(1 )
is implied.
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Thus equation A6 becomes:
p2 - 2Rp +1 =0 (A10) 3
whereupon é
p=A*/aT ff

Note that the two roots of this equation are reciprocal, i.e. PPy = 1
Thus corresponding to real roots, A4 represents a solution which

grows or diminishes (according to the choice of p) following each

period of the excitation, T. The ratio of initial conditions which é

will lead to either of these solutions alone is given by A8.

EXAMPLE - Delta Function Excitation

il o i o

Let o
o(t) = T 8(t-kT}
k=1

Frcm A10, the roots P; depend entirely on the quantity
1
A= 5 [F(T) + £2(T)]

where f](t) and f2(t) are linearly independent solutions of Hill's

Equation (A1) satisfying unitary initial conditions. These can be

chosen as:

f1(t) = c¢os ..t ;

] & A

fz(t) = 5 sin at (A1) g

Thus f](T) = cos QT %

The expression obtained by a formal differentiation of fz(t)

above, is valid up to but not including time t =T since the

application of the first 'impulse' will cause fé (T) to be discontinuous.

This jump discontinuity can be evaluated by an integration of Hill's

Equation (A1): !
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1 T+At

3 -

3 £ (T) - £, (T7) = Tim [2[es(t-T)-11F,(t)dt = e?f,(T)

2 2 2 2

1 At+0 " T-At

b

3 Thus

5 o' (T) = eQsinQT + cosQT

§- and

E A = £ 5ingT + cosql

3 2

g whereupon the roots Pys Pp may be evaluated.

é For any given finite value of e, intervals of the parameter QT

3 exist such that these roots will be real and since their product must

é be unity, the following possibilities arise:

; - .

§ (1) 01-02"&] ;-

: (1) oy > 1, pp <1 1
’ Case (i) represent borderline situations, that is, the solutions A4

Cll‘.‘[""":’!;'gﬂ"‘l‘;

neither grow or decay with each period T of the excitation. Case (i),

on the other hand, produces one solution of tha form A4 which grows in

¥ amplitude by a factor oy > 1 and another which decays by the factor ;
? py < 1, each period of the excitation. The initial conditions which 3
3 produce either of these solutions must only satisfy A8, |
2 fe.  Y'(0) = Pi~H (M) . ]
g = ~ cosQT ]/ sinQT :
3 M) g e |
}ﬁ Figure Al(a,b) shows the solution when this ratio is enforced. In !
. i
iE; general, however, the solution for arbitrary initial conditions is a !
fi\ Tinear combination of these special solutions of pure growth and decay. %
i, Figure Al{c) shows one such solution exhibiting early decay even- ’ - f
il ]
o tually to be overpowered by the growing solution. {
T ;
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The solutions of pure growth or pure decay can be represented as:

tn o,
£4(8) =y (t)el (A12)

where ,
wj(t+T) = ¢j\t)

so that indeed, t
(_ + 1)]" pj

= T -
fi(t+T) = ys(t)e psf;(t)
as required. In general p is complex
hence (
. =1 A+ .

In o, nle;| arg oJ)
Thus L injo,]

f.(t) = ¢.(t)eT J

J J
where it arg P (A13)

When the J are real, ¢j(t) = wj(t) and are periodic in T. Thus

the general solution to Hill's equation may be written

t t
= Inlpoq| = 1nfp,|
Y(t) = Cyoq(t)el + Copyltlel 2
or, enforcing the relation PPy = 1:
L 1n|py | "L nlg|

Y(t) = Cyoq(t)e] + Codp(tle T

]7?o1otin, V. V., The Dynamic Stabilitv of Elastic Systems, Holaeu-Day,
964, 14,
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FIGURE Al - SOLUTIONS TO HILL'S EQUATION - IMPULSE EXCITATION OF

STRENGTH 0.1 APPLIED TO A SYSTEM OF UNIT CIRCULAR
FREQUENCY. INITIAL CONDITIONS INDICATED IN THE
FOLLOWING CAPTIONS (A1(a), A1(b), Al(c) ) ARE PREDI-

CATEC ON AN ASSUMED INITIAL ENERGY PER UNIT MASS OF 1/2.
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